8 research outputs found

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    Get PDF
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Do You Ever Get Off Track in a Conversation? The Conversational System’s Anatomy and Evaluation Metrics

    No full text
    Conversational systems are now applicable to almost every business domain. Evaluation is an important step in the creation of dialog systems so that they may be readily tested and prototyped. There is no universally agreed upon metric for evaluating all dialog systems. Human evaluation, which is not computerized, is now the most effective and complete evaluation approach. Data gathering and analysis are evaluation activities that need human intervention. In this work, we address the many types of dialog systems and the assessment methods that may be used with them. The benefits and drawbacks of each sort of evaluation approach are also explored, which could better help us understand the expectations associated with developing an automated evaluation system. The objective of this study is to investigate conversational agents, their design approaches and evaluation metrics. This approach can help us to better understand the overall process of dialog system development, and future possibilities to enhance user experience. Because human assessment is costly and time consuming, we emphasize the need of having a generally recognized and automated evaluation model for conversational systems, which may significantly minimize the amount of time required for analysis

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    No full text
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    No full text
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies
    corecore